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Abstract. The diffusion of titanium in 6tystalline lithium niobale is studied within the framework 
of the Nemsr-Planck theory for ionic diffusion: Underthis conceptudhtion, a concentration- 
dependent diffusivity emerges naturally from the mathematical model as a direct consequence 
of the electric field induced by ion dislocation in the lanice. Numerical Simulations of the one- 
dimensional case show strong evidence of enhanced diffusive transport of mass. This might 
explain the anomalous lateral penetration of Ti in LiNbO3 which has been observed in previous 
experiments. 

1. Introduction 

Optoelectronic devices for signal generation, transmission and processing are of key 
importance for telecommunication. The optical waveguide on planar substrate is a basic 
component for many integrated optical devices such as switches, modulators and filters. 
They can be manufactured by different processes using a large variety of materials as 
substrates and dopants. Basically, waveguides are made inducing spatial variation in the 
refractive index of some optical material. For LiNbO3, in-dirfusion of Ti is the main and 
well known technological process. However, some physical points of the technique still 
remain unclear. One controversial point concerns the diffusion path in the crystal followed 
by Ti through Li and/or Nb sites. According to Buchal et a1 [l] and Sugii et al [2], 
Ti diffuses in through Nb sites. However, Hauer et al 131 reported Ti diffusion into Li 
sites for concentrations of 1.4 mol% (2.6 x IOzo Recently on the basis of ion 
channelling analysis (ICA) in combination with Rutherford backscattering, particle-induced ~ 

presented a new  proposal^ in which Ti diffuses through Li sites if the Ti concentration 
is below 5.9 wt%. Above this concentration, the Ti in excess of 5.9 wt% diffuses via 
Nb crystal sites. Another open question is the understanding of the apparent anisotropic 
Ti diffusion along the two directions, perpendicular and parallel to the substrate surface 
where the Ti source film is evaporated. Experimentally, an anomalous lateral diffusion, 
between two and three times the depth diffusion [4], is observed. Burns et al [5] as well 
as Fukuma and Noda [6] have explained the results by assuming an anisotropic behaviour 
of the diffusivity. However, the experimental results of Holmes and Smith [7] do not 
indicate any anisotropy for Ti diffusivity in LiNbO3. They explained the enhanced lateral 
diffusion as a consequence of the lithium depletion in the near-surface region. Fick's second 
law is the classical way to model a diffusive transport phenomenon. It results in a well 
known partial differential equation with a constant diffusivity coefficient. Obviously, this 
conventional linear description of the diffusion phenomena cannot represent properly the 
anomalous lateral diffusion without an anisotropic diffusivity. Fontaine ef a1 [8] were able 

- 

~ x-ray emission (PIXE) and nuclear reaction analysis (NRA), Kollewe and Wing [4] have 
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to describe the enlarged diffusion along the direction parallel to the substrate surface, solving 
the two-dimensional diffusive problem with a spatially dependent diffusivity along the depth 
direction. The origin of this spatial dependence of diffusivity is not conclusively discussed 
by them and has no strong physical justification. Following Kollewe and Kling [4], for 
titanium concentrations up to 5.9 wt%, Ti diffuses in LiNbO3 replacing Nb ions in Li sites 
with a counter-diffusion of Nb ions, a process similar to ion exchange in glasses [9,10]. 
Considering that these ions have different valences and diffusivities, we suggest that there 
exists an internal electric field acting simultaneously with diffusion in the global process. In 
this case, the Nernst-Planck conceptualization is more adequate than that originally proposed 
by Fick. By means of the Nemst-Planck approach for ionic diffusive transport, the main 
proposal of the present work is to describe the process of TI planar in-diffusion through 
LiNb03. The results of numerical simulations will enable us to provide a satisfactory 
interpretation for the anomalous lateral diffusion phenomena as well as for the intrinsic 
nature of the mass transport process in the crystal. 

F Dios Nunes et a1 

2. Model formulation 

In this step, we proceed with the model formulation to describe the mass transport process 
of Ti diffusion in LiNbO3. As in the mechanism proposed by Buchal er a1 [l] and Sugii et 
af [2], we consider that Ti4+ diffuses in LiNbO3 replacing NbSt ions. From the schematic 
diagram shown in figure 1, for the case in which a Ti layer covers entirely one of the 
crystal's surfaces, the diffusion process is considered to be one dimensional. As a first 
approximation, we assume that the charge balance is instantaneously achieved during the 
dynamics of diffusion penetration. This can be formally expressed as 

(1) 

where p and q are the valences of the Ti and Nb ions, respectively, C is an equivalent 
global concentration and the other variables are the concentrations of the ions identified 
by the subscripts. In our simulations, we consider only very low concentrations of Ti4t 
penetrating into the crystal. As a consequence, the presence of TiG in the bulk solid phase 
might be considered as a dopant ion so that we should be dealing with a typical tracer 
diffusion mechanism of transport. In this case, the replacement of Nb5+ by TiG ions would 
result in a negligible overall volume change. Following the Nernst-Planck approach and 
making use of the simplifying assumption that the internal electric field and the gradients 
of Ti and Nb concentrations are collinear, the mass flux of ion i can be written as 

P c Z  + qCNb = c 

where Di and vi are the diffusivity  and^ valence, respectively, of ion i and E is the electric 
field. 7 and R are the Faraday and gas constants, respectively. If no sources or sinks of 
charges exist, no net electric current should be present within the crystal, In this case, the 
following identity holds: 

(3) P h i  f qJNb = 0. 

Substituting the expression for each ionic flux as given by equation (2) in equation (3), the 
mass flux of Ti may be written as 
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Since C is a constant, equation (1) allows one to relate the gradient of both species in the 
following way: 

Equation (4) may then be rewritten to give 

where De is an effective diffusivity given by 

where (Y = p - ( p 2 / q ) r ,  p = ( p 2 / q ) ( q  - p )  and r = Dp/Dm 

*: 

0 Ix L 

Figure 1. Schematic diagram of Ti plane m-diffusion into LiNbO3 

Now, if we apply the law of conservation of mass of Ti to a fixed volume element in 
- the crystal, one obtains, after letting the size of the control volume decrease to zero 

where is the non-linear partial differential equation descriptive of TI diffusive transport into 
the crystal structure. The boundary and initial conditions are specially posed to represent 
the experimental scenario described by Holmes and Smyth [7]. At the initial time, there 
is no Ti present in the solid crystal and the surface layer acts as a continuous source of 
this element. Subsequently, at a time ts, the surface phase will dissolve completely into 
the LabO, structure and all the Ti originally deposited on the film will be dispersed in 
the crystal phase. After that, mass is conserved in the solid and diffusion takes place to 
equalize 'gradient concentrations along the x direction. Ti will penehate more deeply into the 
LiNb03 substrate until the concentration profile evolves to a constant value. This physical 
situation can be mathematically translated to the following boundary and initial conditions: 
the boundary conditions are 

C 
P 

CTi(0, t )  = - t < ts 
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and the initial condition is 

F Dins Nunes et a1 

C,i(X. 0) = 0. 

For all practical purposes, equations (&(lo) can be expressed in dimensionless form as 

(11) 
aU 1 -,%a% 
as 1 - -U a p  + - = -- 

with, assuming that p = 4, 

u(0, r )  = 0.25 s < r, 

aUI = O  V r  a: 
U(:, 0) = 0 

where U = Cn/C and we have adopted the well known parameterization for time and space: 
t = Drit/L2 and : = x / L ,  respectively (the dimensionless switching time r, corresponding 

The orthogonal collocation technique [ l l ]  has been applied to solve the non-linear 
initial-boundary value problem given by equations (11) and (12). Firstly, equation (11) is 
discretized on the spatial variable : adopting the zeros of the Jacobi polynomials Py) as 
normalized collocation points: 

tO DTjts/L2). 

i = 1,2, .  . . , N (13) 
N+l dui 1 -PU; 

dr  1 - - ~ i  . B i j ~ j  + -=- 
J = O  

where N is the number of collocation points, and Aij and B;j are the orthogonal collocation 
coefficients for the first and second derivatives, respectively. The boundaries E = 0 and 

= 1 are taken as interpolation points and the resulting system of non-linear ordinary 
differential equations is then integrated using a standard fourth-order RungeKutta method. 
By fixing the amount of Ti in the surface layer Ms, we can compare this quantity with the 
total mass dissolved in the solid phase M during the course of the process. At a given time, 
the Ti which has already diffused in the crystal can be readily calculated by means of the 
Gauss-Jacobi quadrature: 

where the wi are the Gauss-Jacobi quadrature weights and the values in the summation 
term correspond to the N distinct real roots of the polynomial P,".", all interior to the 
orthogonality interval 10, 11. The switching time ts refers to the moment at which the total 
mass of TI present in the crystal is equal to the amount of such element originally deposited 
on the surface (M = Ms). The precision of the orthogonal collocation technique depends 
essentially on the number of internal collocation points, whose increase invariably leads 
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to a more difficult numerical integration process because of the high dimensionality and 
stiffness of the system of ordinary,differential equations. It happens especially when sharp 
profiles arise and a high number of orthogonal collocation points is necessary to obtain a 
reasonably precise solution. The alternative approach adopted in the present work is to 
make use of the finite-element collocation technique. In this case, the collocation method 
is applied to subintervds of the original domain, by ensuring between them the continuity 
of the solution and its first derivatives. In our calculations, only two subintervals with 
20 and six collocation points proved to be sufficient to generate a concentration profile 
with a relative precision of ~10-4 in the worst case, when compared with lower orders of 
approximation. 

3. Results and discussion 

Our simulations have been performed for the diffusion of Ti4+ ( p  = 4) with the counter- 
diffusion of Nb5+ (q = 5) .  The diffusivity ratio r = R I / D ~ ~  for LiNbO, is a fundamental 
parameter required in our model which, until now, has not b e n  obtained experimentally. 
Furthermore, it might vary for different sets of physicochemical conditions and different 
structural aspects of the crystal topology. All simulations have been performed with 
L = 1 nun. Figure 2 shows the dependence of the effective diffusivity De on the normalized 
titanium concentration Cn/C for different values of the diffusivity ratio r .  For r i 1, the 
effective diffusivity is an increasing function of U in the interval [0, l/or)'and has a first- 
order pole at U = l/a. The dependence of De on Cn will be stronger, the smaller the 
value of the diffusivity ratio r .  The linear diffusion process corresponds to r = 1 where 
the effective diffusivity becomes constant and equal to the titanium diffusion.coefficient 'in 
LiNbO, (De = Dn). It is interesting to note that, for r > 1, &'becomes adecreasing 
function of the titanium concentration. We classify this case as one of non-pra&ical interest: 

diffusion equations with non-linearities of the type in equ&on~(8) have a direct connection 
with systems in the so-called self-organized criticalify state 1131. To be more precise, the 
diffusion equation with a non-linear correction such as that given by equation (7) would 
represent the continuous limit of certain self-organizing models. Furthermore, the smguladiy 
of such diffusivity dependence on concentration would be intimately related to acritical point 
for dynamical instabilities to take place. We are currently investigating' tfiese theoretical 
intepretations for equation (7) and more details will begiven in a subsequent paper. 

For comparison, simulations have been performed for three different values .of ~ the 
diffusivity ratio (r = 1, 0.5 and 0.2). all for the same set of dimensionless times. Figure 3 
shows the spatial variation in titanium concentration for five distinct values~of s'and 'a 
diffusivity ratio r = 1, corresponding to a~ linear process of diffusiSe mass transfer. As 
expected, an exponential-like spatial dependence is displayed at short penetration times. 
After the complete dissolution of the TI covering layer at the top of the cryst@' skface 
( T  > T ~ ) ,  the concentration profile evolves gradually to a Gaussian-like shape. For even 
longer diffusion times, a stationary flat curve of dopant'concentration will be eventually 
achieved in the LiNbO, experimental sample. From figures 4 and 5, we c& clearly observe 
an enhanced diffusive behaviour which becomes more evident for smaller values of the 
diffusivity ratio, e.g. r = 0.2 (figure 5). This is a distinctive feature of the non-linearity 
described by equation (7) which can be easily quantified in terms of the switching time T,. 
The smaller the value of the diffusivity ratio r ,  the sooner complete penetration of the Ti 
surface layer will take place. This is a direct result of the intrinsic spatial and temporal 

- 

~ Recent work by Carlson et a1 [I21 has been devoted to demonstrating thai simple 'driven . ,  ~~. 

. . .,.. ; 

, ,  
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Figure 2. Effective diffusivity as a function of l7 concentration for different values of 1. 

variability of D. as an explicit function of Ti concentration in the crystal. Such a tendency 
can be readily visualized from figures 6 and 7 where the variation in the effective diffusion 
coefficient with the penetration depth is shown for different values of r and diffusivity ratios 
r equal to 0.5 and 0.2, respectively. 

The linear description has been the most frequently utilized approach to calibrate any 
diffusion process. Indeed, a simple comparison between concentration profiles from linear 
and non-linear representations demonstrates their qualitatke similarity. This resemblance 
would easily suggest that any single concentration profile could be simply adjusted to the 
linear model by means of a convenient choice of the diffusivity parameter. The inconsistency 
of such procedure, however, will lead to an erroneous extrapolation in time if the diffusivity 
is concentration dependent. In other words, the diffusion coefficient estimated for a given 
spatial concentration profile at a specified penetration time might not be appropriate for 
describing the entire dynamical evolution of the diffusion phenomena. If so, one can draw 
the probable conclusion that the diffusivity is concentration dependent and, as a consequence, 
the macroscopic description of mass transport is non-linear. As indicated by Fontaine er 
d [SI, geometry may also induce significant differences between linear and non-linear 
representations of the diffusive behaviour. The anomalous lateral penetration observed 
experimentally for two-dimensional TI diffusion in LiNbO3 cannot be fully explained from 
a linear diffusion description except if anisotropy is invoked. This is not the case since, as 
already commented, the experimental results of Holmes and Smith 171 points to an isotropic 
diffusivity process. 

4. Conclusions 

A mathematical model has been devised to represent the diffusive mass transport of titanium 
ions in the crystalline structure of lithium niobate. The Nernst-Planck approach provided a 
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Figure 3. Spatial profiles of Ti concentration for different values of the dimensionless time and 
r = l  
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Figure 4. Spatial profiles of Ti concentration for different values of the dimensionlws time and 
r = 0.5. 
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Figure 5. Spatial profiles of Ti concentration for different values of the dimensionless time and 
r = 0.2, 
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Figure 6. Spatial dependence of the effective Ti diffusivity for different values of T and I = 0.5. 
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0 

Figure 7. Spatial dependence of the effective li diffvsivily for different values of c and r = 0.2. 

non-linear description of the macroscopic diffusion phenomena which might be the natural 
explanation for the enhanced diffusive behaviour observed in some experimental studies, 
a concentration-dependent difisiviry. The results of numerical simulations indicated how 
dramatic is the influence of such non-linearity on the dynamical evolution of Ti in-diffusion 
through LiNbO3. It was shown that, for a consistent evaluation of the diffusivity parameter, 
one has to consider the overall process of Ti penetration into the crystal lattice. With a 
view to improving the performance of the system, the modelling technique developed here 
might be useful to assess important features of the technological process for manufacturing 
optical waveguides. We are currently investigating the non-linear two-dimensional case. 
Also, an extended version of the model will consider the diffusive transport of Ti through 
two different sites in parallel, namely the Li and Nb substituted positions in the LiNbOp 
crystal, according to the mechanism proposed by Hauer et al [3] and Kollewe and Kling 
~41. 
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